一文解析影响粘接强度的化学因素及物理因素!

  新闻资讯     |      2019-09-06 06:09:21
影响粘接强度的化学因素

  影响粘接强度的化学因素主要指分子的极性、分子量、分子形状(侧基多少及大小)、分子量分布、分子的结晶性、分子对环境的稳定性(转变温度和降解)以及胶粘剂和被粘体中其它组份性质PH值等。

 

1
 
极性

  一般说来胶粘剂和被粘体分子的极性影响着粘接强度,但并不意味着这些分子极性的增加就一定会提高粘接强度。从极性的角度出发为了提高粘接强度,与其改变胶粘剂和被粘体全部分子的极性,还不如改变界面区表面的极性。例如聚乙烯、聚丙烯、聚四氟乙烯经等离子表面处理后,表面上产生了许多极性基团,如羟基、羰基或羧基等,从而显著地提高了可粘接性。

     2
 
分子量

  聚合物的分子量(或聚合度)直接影响聚合物分子间的作用力,而分子间作用力的大小决定物质的熔点和沸点的高低,对于聚合物决定其玻璃化转变温度Tg和溶点Tm.。所以聚合物无论是作为胶粘剂或者作为被粘体其分子量都影响着粘接强度。

  一般说来,分子量和粘接强度的关系仅限于无支链线型聚合物的情况,包括两种类型。第一种类型在分子量全范围内均发生胶粘剂的内聚破坏,这时,粘接强度随分子量的增加而增加,但当分子量达到某一数值后则保持不变。第二种类型由于分子量不同破坏部分亦不同。这时,在小分子量范围内发生内聚破坏,随着分子量的增大粘接强度增大;当分子量达到某一数值后胶粘剂的内聚力同粘附力相等,则发生混合破坏;当分子量再进一步增大时,则内聚力超过粘附力,浸润性不好,则发生界面破坏。结果使胶粘剂为某一分子量时的粘接强度为最大值。

     3
 
侧链

  长链分子上的侧基是决定聚合物性质的重要因素,从分子间作用力考虑,聚合物支链的影响是,当支链小时,增加支链长度,降低分子间作用力。当支链达到一定长度后,开始结晶,增加支链长度,提高分子间作用力,这应当是降低或提高粘接强度的原因。

     4
 
PH值

  对于某些胶粘剂,其PH值与胶粘剂的适用期,有较为密切的关系,影响到粘接强度和粘接寿命。一般强酸、强碱,特别是当酸碱对粘接材料有很大影响时,对粘接常是有害的,尤其是多孔的木材、纸张等纤维类材更容易受影响。

  由于像热固性的酚醛树脂和脲醛树脂的固化过程受PH值的影响很大,常常要求酸度较大。例如,固化时在酚醛树脂中加入对甲苯磺酸或磷酸,在脲醛树脂中加入氯化铵或盐酸。因此,在不希望酸度大又要粘接的场合,选用中性的间苯酚甲醛树脂是适宜的。

  将木材表面预先用碱处理,一般可得到牢固的接头。但还必须注意胶层的PH值,它对胶层比对被胶接表面更有影响。

     5
 
交联

  聚合物的内聚强度随交联密度的增加面增大,而当交联密度过大时聚合物则变硬变脆,因而使聚合物耐冲击强度降低。交联聚合物的强度与交联点数目和交联分子的长度密切相关,随着交联点数目的增多,交联间距的变短以及交联分子长度的变短,交联聚合物会变得又硬又脆。

     6
 
溶剂和增塑剂

  溶剂型胶粘剂的粘接强度当然要受胶层内残留溶剂量的影响。溶剂量多时,虽浸润性好,但由于胶粘剂内聚力变小,而使内聚强度降低。胶粘剂聚合物之间的亲合力大时,随着溶剂的挥发粘接强度增大。两者之间无亲合力时,残留一些溶剂时胶粘剂的粘附性却较大,随着溶剂的挥发,强度反而下降。例如聚醋酸乙烯不能粘接聚乙烯,但加入少量溶剂后则可粘接。显然,溶剂起了增加两者间亲合力的作用。

  增塑剂和溶剂的作用类似,有时即便在粘不上的情况下,加入适当的增塑剂也可粘上。当是,增塑剂也将随着时间的推移或是挥发,或是向表面渗出,在增塑剂减少的同时粘接强度不断下降。相反,有时被粘物内的增塑剂也会渗移到胶层里,使胶粘剂软化而失去内聚粘接强度。或增塑剂聚集在界面上而使粘接界面分离。

     7
 
填料

  在胶粘剂中配合填料有如下作用:(1)增加胶粘剂的内聚强度;(2)调节粘度或工艺性(例如触变性);(3)提高耐热性;(4)调整热膨胀系数或收缩性;(5)增大间隙的可填充性;(6)给予导电性;(7)降低价格;(8)改善其他性质。

     8
 
结晶性

  结晶度高的聚合物分子的缩聚状态是有规则的,如果溶点不高,加热结晶聚合物,将使结晶范围内的有序的分子排列发生混乱,分子开始向溶融状态过渡。因此,结晶度高的聚合物适宜作热溶。

     9
 
分解

  在使用过程中,胶粘剂分解是使粘接强度降低成的重要因素,而使胶粘剂分解的原因有水、热、辐照、酸、碱及其他化学物质。聚合物与水反应而分解称水解。加热常常又可能导致聚合物交联,聚合物抗水解能力因其分子中化学键的不同面异。多数水溶性聚合物易于水解。不溶于水的聚合物水解就非常慢,而聚合物吸附水的能力对水解起着重要作用,聚合物水解也受结晶性和链的构象的明显影响。由于微量的酸或碱可加速某些聚合物水解,聚酯类缩合树脂与酸或碱接触时,很容易水解。环氧树脂的耐湿性根据固化剂的种类和使用环境不同而有明显的不同,以聚酰胺固化的环氧树脂因酰胺键水解而破坏;以多元酸酐固化的环氧树脂因酯键的断裂而解体;聚氨酯也常因酯键水解面破坏,而具有醚键、碳-碳键结构的聚合物,如酚醛树脂、丁苯、丁腈橡胶,就不易水解,耐水性良好。

  聚合物加热过度将引起下列变化:(1)聚合物分子的分解;(2)继续交联;(3)可挥发和可迁移成分的逸出;这些过程的结果将导致胶粘剂内聚强度下降或界面作用力降低。

  聚合物在高温下会发生降解和交联的作用,降解使聚合物分子链断裂,分子量下降,使聚合物强度降低,交联使分子间形成新的化学键,分子量增加,聚合物强度上升。粘接接头上聚合物不断交联将使聚合物发脆,接头强度变坏。

影响粘接强度的物理因素
     1
 
表面粗糙度

  当胶粘剂良好地浸润被粘材料表面时(接触角θ<90°),表面的粗糙化有利于提高胶粘剂液体对表面的浸润程度,增加胶粘剂与被粘材料的接触点密度,从而有利于提高粘接强度?反之,当胶粘剂对被粘材料浸润不良时(θ>90°),表面的粗糙化就不利于粘接强度的提高?

     2
 
表面处理

  粘接前的表面处理是粘接成功的关键,其目的是能获得牢固耐久的接头?由于被粘材料存在氧化层(如锈蚀)?镀铬层?磷化层?脱模剂等形成的“弱边界层”,被粘物的表面处理将影响粘接强度?例如,聚乙烯表面可用热铬酸氧化处理而改善粘接强度,加热到70-80oC时处理1-5分钟,就会得到良好的可粘接表面,这种方法适用于聚乙烯板?厚壁管?等?而聚乙烯薄膜用铬酸处理时,只能在常温下进行?如在上述温度下进行,则薄膜的表面处理,采用等离子或微火焰处理?

  对天然橡胶?丁苯橡胶?丁腈橡胶和氯丁橡胶表面用浓硫酸处理时,希望橡胶表面轻度氧化,故在涂酸后较短的时间,就要将硫酸彻底洗掉?过度的氧化反而在橡胶表面留下更多的脆弱结构,不利于粘接?

  对硫化橡胶表面局部粘接时,表面处理除去脱膜剂,不宜采用大量溶剂洗涤,以免不脱膜剂扩散到处理面上妨碍粘接?

  铝及铝合金的表面处理,希望铝表面生成氧化铝结晶,而自然氧化的铝表面是十分不规则的?相当疏松的氧化铝层,不利于粘接?所以,需要除去自然氧化铝层?但过度的氧化会在粘接接头中留下薄弱层?

3
 
渗透

  已粘接的接头,受环境气氛的作用,常常被渗进一些其他低分子?例如,接头在潮湿环境或水下,水分子渗透入胶层;聚合物胶层在有机溶剂中,溶剂分子渗透入聚合物中?低分子的透入首先使胶层变形,然后进入胶层与被粘物界面?使胶层强度降低,从而导致粘接的破坏?

  渗透不仅从胶层边沿开始,对于多孔性被粘物,低分子物还可以从被粘物的空隙?毛细管或裂缝中渗透到被粘物中,进而侵入到界面上,使接头出现缺陷乃至破坏?渗透不仅会导致接头的物理性能下降,而且由于低分子物的渗透使界面发生化学变化,生成不利于粘接的锈蚀区,使粘接完全失效?

4
 
迁移

  含有增塑剂被粘材料,由于这些小分子物与聚合物大分子的相容性较差,容易从聚合物表层或界面上迁移出来?迁移出的小分子若聚集在界面上就会妨碍胶粘剂与被粘材料的粘接,造成粘接失效?

5
 
压力

  在粘接时,向粘接面施以压力,使胶粘剂更容易充满被粘体表面上的坑洞,甚至流入深孔和毛细管中,减少粘接缺陷?对于粘度较小的胶粘剂,加压时会过度地流淌,造成缺胶?因此,应待粘度较大时再施加压力,也促使被粘体表面上的气体逸出,减少粘接区的气孔?

  对于较稠的或固体的胶粘剂,在粘接时施加压力是必不可少的手段?在这种情况下,常常需要适当地升高温度,以降低胶粘剂的稠度或使胶粘剂液化?例如,绝缘层压板的制造?飞机旋翼的成型都是在加热加压下进行?

  为了获得较高的粘接强度,对不同的胶粘剂应考虑施以不同的压力?一般对固体或高粘度的胶粘剂施高的压力,而对低粘度的胶粘剂施低的压力?

6
 
胶层厚度

  较厚的胶层易产生气泡?缺陷和早期断裂,因此应使胶层尽可能薄一些,以获得较高的粘接强度?另外,厚胶层在受热后的热膨胀在界面区所造成的热应力也较大,更容易引起接头破坏?

  在实际的接头上作用的应力是复杂的,包括剪切应力?剥离应力和交变应力?

  (1)切应力:由于偏心的张力作用,在粘接端头出现应力集中,除剪切力外,还存在着与界面方向一致的拉伸力和与界面方向垂直的撕裂力?此时,接头在剪切应力作用下,被粘物的厚度越大,接头的强度则越大?

  (2)剥离应力:被粘物为软质材料时,将发生剥离应力的作用?这时,在界面上有拉伸应力和剪切应力作用,力集中于胶粘剂与被粘物的粘接界面上,因此接头很容易破坏?由于剥离应力的破坏性很大,在设计时尽量避免采用会产生剥离应力的接头方式?

  (3)交变应力:在接头上胶粘剂因交变应力而逐渐疲劳,在远低于静应力值的条件下破坏?强韧的?弹性的胶粘剂(如某些橡胶态胶粘剂)耐疲性能良好?

7
 
内应力

  (1)收缩应力:当胶粘剂固化时,因挥发?冷却和化学反应而体积发生收缩,引起收缩应力?当收缩力超过粘附力时,表观粘接强度就要显著降?此外,粘接端部或胶粘剂的空隙周围应力分布不均匀,也产生应力集中,增加了裂口出现的可能?有结晶性的胶粘剂在固化时,因结晶而使体积收缩较大,也造成接头的内应力?如在其中加入一定量能结晶或改变结晶大小的橡胶态物质,那么就可以减少内应力?在热固性树脂胶中加增韧剂是一个最好的说明?例如酚醛-缩醛胶,当缩醛含量低于40%时,接头发生单纯界面破坏;而在40%以上时则为内聚破坏,粘接强度明显增强?

  (2)热应力:在高温下,熔融的树脂冷却固化时,会产生体积收缩,在界面上由于粘接的约束而产生内应力?在分子链间有滑移的可能性时,则产生的内应力消失?

  影响热应力的主要因素有热膨胀系数?室温和Tg间的温差以及弹性差量?

  为了缓和因热膨胀系数差而引起的热应力,应使胶粘剂的热膨胀系数接近于被粘物的热膨胀系数,加填料是一种好办法,可添加该种材料的粉末?或其化材料的纤维或粉末?

更多检测内容 电话咨询:400 880 4601
捷标检测 官网:www.jiebiaotest.com

 

【来源:anytesting

 版权与免责声明:

  ①本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,
并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。

  ②如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,我们将在第一时间删除内容